Synchronization problems with

semaphores

Lecture 4 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF
GOTHENBURG

345 o A a\ /* |I_
"_-\ " >

CHALMERS

UNIVERSITY OF TECHNOLOGY

ST

(S 5;5 UNIVERSITY OF GOTHENBURG

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

(1) crsLmens @-w.wn.u-:...-m.-r

Lesson's menu

Dining philosophers e

. Dlnlng philosophers Producer-consumer

* Producer-consumer

(1) crsLmens @-w.wn.u-:...-m.-r

e Barriers

U'E’PE_I:M_EE @ WIFEREITY (1F CNTHEN Ba r_r_‘l E r_s

e Readers-writers

Readers-writers

ﬁwﬂl‘ﬂph A E O R O e e—"

UNIVERSITY 08 TECHMOLDGY

©} CHALMERS @ UNIVERSITY OF GoTHENBURG RI5

I Learning outcomes
I_e S S O n S m e n U Knowledge and understanding:

» demonstrate knowledge of the issues and problems that arise in writing correct concurrent
programs;

* identify the problems of synchronization typical of concurrent programs, such as race conditions and
mutual exclusion

Skills and abilities:

* apply common patterns, such as lock, semaphores, and message-passing synchronization for solving
concurrent program problems;

» apply practical knowledge of the programming constructs and technigues offered by modern

D i n i n g p h i | OSO p h e rS concurrent programming Ianguages;

* implement solutions using common patterns in modern programming languages

[d - Judgment and approach:
P ro u Ce r CO n S u m e r . evalbl.iate the correctness, clarity, and efficiency of different solutions to concurrent programming
problems;

Y Ba rri e rS * judge whether a program, a library, or a data structure is safe for usage in a concurrent setting;

* pick the right language constructs for solving synchronization and communication problems between
computational units.

* Readers-writers
* |dentify problems of synchronization
 What issues and problems can arise
* Patterns for introducing synchronization

efl UNIVERSITY OF GOTHENBURG

e

CHALMERS

UNIYERSITY QF TECHNOLOGY

A gallery of synchronization problems
* Today we go through several classical synchronization problems and solve them using

threads and semaphores
* |f you want to learn about many other synchronization problems and their solutions

* “The little book of semaphores” by A. B. Downey: http://greenteapress.com/semaphores/
* We use pseudo-code to simplify the details of Java syntax and libraries but which can

be turned into fully functioning code by adding boilerplate
* On the course website: can download fully working implementations of some of the problems

* Recall that we occasionally annotate classes with invariants using the pseudo-code

keyword invariant
* Not a valid Java keyword — that is why we highlight it in a different color — but we will use it to

help make more explicit the behavior of classes
e We alsouse at (i) orat(i,j) toindicate the number of threads that are at location i or

between locations i, j. (That’s not Java either)

http://greenteapress.com/semaphores/

@) UNIVERSITY OF GOTHENBURG

i

Dining philosophers

CHALMERS é’;__s 3 UNIVERSITY OF GOTHENBURG

The dining philosophers (reminder)

The dining philosophers is a classic synchronization
problem introduced by Dijkstra

It illustrates the problem of deadlocks using a colorful
metaphor (by Hoare)

* Five philosophers are sitting around a dinner table,
with a fork in between each pair of adjacent
philosophers

e Each philosopher alternates between thinking (non-
critical section) and eating (critical section)

* [n order to eat, a philosopher needs to pick up the
two forks that lie to the philopher’s left and right

* Since the forks are shared, there is a synchronization
problem between philosophers (threads)

“) CHALMERS

UNIYERSITY QF TECHNOLOGY

j UNIVERSITY OF GOTHENBURG

&)

Dining philosophers: the problem

Properties of a good solution:
e support an arbitrary number of philosophers

e deadlock freedom

e starvation freedom
// philosopher k releases forks)
Preeeer » reasonable efficiency: eating in parallel still

void putForks (int k) ; possible

interface Table {

// philosopher k picks up forks

void getForks (int k);

Dining philosophers’ problem: implement Table such that:
e forks are held exclusively by one philosopher at a time

e each philosopher only accesses adjacent forks

ST,

é’, 1)) UNIVERSITY OF GOTHENBURG

S ':'

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

The philosophers

Each philosopher continuously alternate between thinking and eating; the table
must guarantee proper synchronization when eating

Table table; // table shared by all philosophers

philosopher;,
while (true) {
think(); // think
table.getForks(k); // wait for forks
eat(); // eat

table.putForks(k); // release forks

3 CHALMERS

UNIYERSITY QF TECHNOLOGY

‘?*}E UNIVERSITY OF GOTHENBURG

i

Left and right

For convenience, we introduce a consistent numbering scheme for forks and
philosophers, in a way that it is easy to refer to the left or rlght fork of each

philosopher.

// in classes implementing Table:

// fork to the left of philosopher k
public int left (int k) {
return k;

}

// fork to the right of philosopher k
public int right (int k) {
// N is the number of philosophers
return (k + 1) % N;
}

i) CHALMERS {3_5 UNIVERSITY OF GOTHENBURG

Dining philosophers with locks and semaphores

* We use semaphores to enforce mutual exclusion when philosophers access the
forks

First solution needs only locks:

Lock[] forks = new Lock[N]; // array of locks

* One lock per fork

e« forks[i].lock () to pickup fork i:
forks[i] is held if fork i is held

e forks[i].unlock () to put down fork i:
forks[i] is available if fork i is available

ST,

é’, "i_j UNIVERSITY OF GOTHENBURG

S ':

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

Dining philosophers with semaphores: first attempt

In the first attempt, every philosopher picks up the left fork and then the right
fork:

public class DeadTable implements Table ({
Lock[] forks = new Lock|[N];

"~ All forks initially avaliable

public void getForks (int k) { public void putForks (int k) {
// pick up left fork // put down left fork
forks[left (k)].lock(); forks[left (k)] .unlock () ;
// pick up right fork // put down right fork

forks[right (k)].lock(); forks[right (k)] .unlock ()
} }

%ﬁ CHALMERS ®%) UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY

Dining philosophers with semaphores: first attempt

public class DeadTable implements Table
{ Lock[] forks = new Lock[N];

public void getForks (int k) {

// pick up left fork if all philosophers hold

forks[left (k)].1ock ()7 ,— |eft fork: deadlock!
// pick up right fork

forks[right (k)] .lock();
}

A deadlock may occur because of circular waiting:

P

{®})) UNIVERSITY OF GOTHENBURG
A

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

Dining philosophers solution 1: breaking the symmetry

Having one philosopher pick up forks in a different order than the others is
sufficient to break the symmetry, and thus to avoid deadlock

public class AsymetricTable implements Table {
Lock[] forks = new Lock[N];

public void getForks (int k) {

if (k == N) { // right before left
forks[right (k)] .lock();
forks[left(k)].lock();

} else { // left before right
forks[left(k)].lock();
forks[right (k)] .lock();

}

}
// putForks as 1in DeadTable

efl UNIVERSITY OF GOTHENBURG

Breaking symmetry to avoid deadlock

Breaking the symmetry is a general strategy to avoid deadlock when acquiring
multiple shared resources:

* assign a total order between the shared resources Ry < Ry < - < Ry,

* a thread can try to obtain resource R;, with i > j, only after it has
successfully obtained resource R;

Recall the Coffman conditions from Lecture 2...:

1. mutual exclusion: exclusive access to the shared resources

2. hold and wait: request one resource while holding another

3. no preemption: resources cannot forcibly be released

4. circular wait: threads form a circular chain, each waiting for a resource the next is holding

Circular wait is a necessary condition for a deadlock to occur

=) CHALMERS ®%)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY 2 :
s

Dining philosophers solution 2: bounding resources

Limiting the number of philosophers active at the tabletoM < N ensures that
there are enough resources for everyone at the table, thus avoiding deadlock

public class SeatingTable implements Table ({
Lock[] forks = new Lock[N];

Semaphore seats = new Semaphore (M); // # available seats
public void getForks (int k) { public void putForks (int k) {

// get a seat // put down left fork
[seats.down(); forks[left (k)] .unlock();

// pick up left fork // put down right fork

forks[left (k)] .lock():; forks[right (k)] .unlock();

// pick up right fork // leave seat
forks[right (k)].lock(); seats.up () ;

} }

efl UNIVERSITY OF GOTHENBURG

Starvation-free philosophers

The two solutions to the dining philosophers problem also guarantee freedom from
starvation, under the assumption that locks/semaphores (and scheduling) are fair

In the asymmetric solution (AsymmetricTable):

* if a philosopher P waits for a fork k, P gets the fork as soon as P’s neighbor holding fork
k releases it,

* P’s neighbor eventually releases fork k because there are no deadlocks.

In the bounded-resource solution (SeatingTable):
e at most M philosophers are active at the table,
the other N-M philosophers are waiting on seats.down (),
the first of the M philosophers that finishes eating releases a seat,
the philosopher P that has been waiting on seats.down () proceeds,
similarly to the asymmetric solution, P also eventually gets the forks.

{#%)) UNIVERSITY OF GOTHENBURG

Producer-consumer

=) CHALMERS é::’ij UNIVERSITY OF GOTHENBURG

Producer-consumer: overview

Producers and consumer exchange items through a shared buffer:
* producers asynchronously produce items and store them in buffer
* consumers asynchronously consume items after removing them from buffer

'Oho \\ mwn@

d “P‘“‘“"QO»
producer

buffer

consumer

g
B raing
e o

CHALMERS ﬂ?‘j UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY 2 :
s

Producer-consumer: The problem

Producer-consumer problem: implement Buffer such that:
e producers and consumers access the buffer in mutual exclusion

e consumers block when the buffer is empty

e producers block when the buffer is full (bounded buffer variant)

interface Buffer<T> {
// add item to buffer; block if full
volid put (T item);

// remove item from buffer; block if empty
T get();

// number of items 1in buffer
int count () ;

gf CHALMERS

:_! UNIVERSITY OF GOTHENBURG

e

S UNIVERSITY OF TECHNOLOGY

Producer-consumer: Desired properties

Producer-consumer problem: implement Buffer such that:

e producers and consumers access the buffer in mutual exclusion

e consumers block when the buffer is empty

e producers block when the buffer is full (bounded buffer variant)

Other properties that a good solution should have:
e support an arbitrary number of producers and consumers
* deadlock freedom
e starvation freedom

ST,

é’, 1)) UNIVERSITY OF GOTHENBURG

S ':'

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

Producers and consumers

Producers and consumers continuously and asynchronously access the buffer,
which must guarantee proper synchronization

Buffer<Item> buffer;

producer,, consumer,,
while (true) { while (true) {
// create a new item Item item = buffer.get();
Item item = produce(); // do something with ‘item’
buffer.put(item); consume(item);
} }

ST,

CHALMERS éi%;)) UNIVERSITY OF GOTHENBURG
Unbounded shared buffer Solution based on
one lock and one
public class UnboundedBuffer<T> implements Buffer<T> ({ ’//////SEWBphONE
Lock lock = new Lock(); // for exclusive access to buffer
Semaphore nltems = new Semaphore(0); // number of items in buffer
Collection storage = ...; // any collection (list, set, ...)
[invariant { storage.count () == nItems.count() + at(5,15-17); ﬂ
}
1 public void put (T item) { Signals to N 2 public T get() |
2 lock.lock(); // lock consumers waiting . // wait until nTtems > 0
3 // store item in get that they 14 nItems.down () ;
a storage.add (item) can proceed 15 lock.lock(); // lock
5 nItems.up () ; // update nItems 10 //.retrieve item
6 lock.unlock(); // release 17 T 1tem =storage.remove ()
. ’ 18 lock.unlock(); // release
7 19 return item;
B a0)

9 public int count () {

10 return nltems.count(); // locking here?

11 }

=) CHALMERS ®)) UNIVERSITY OF GOTHENBURG

UNIYERSITY OF TECHHNOLOGY
GETTE

Buffer: method put

? .
Can we execute up after unlock: Executing up after unlock:

* No effects on other threads executing put:

{ they only wait for 1ock

1 public void put (T/ifem)

3 // store itém * |f a thread is waiting for nItems > 0in

s storage. get: it does not have to wait again for 1ock
5 nltems.up () // update nItems just after it has been signaled to continue

b lock.umlock (), // release * If a thread is waiting for the lock in get: it
7 may return with the buffer in a (temporarily)
8 inconsistent state (broken invariant, but

9 public int count () { benignh because temporary)

10 return nltems.count(); // locking here?

11 }

Executing up after unlock

[

public void put (T item)
lock.lock ()
storage.add

k

)

td

lock.unloc
nIltems.up (

oo m B W

}

Different numbers than
original program

Old invariant needs rewriting

OLD:

== nItems.count ()

invariant { storage.count ()
+ at(5,15-17); }

elements in buffer
invariant/ {
storage.count () ==

nItems.count () + at((4,9-10);
} “~ N

{

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

7 public T get ()
8 nltems.down();
s Jlock.lock();
w T item =storage.remove () ;
11 Jock.unlock();
1z return item;

13 }

{

ij UNIVERSITY OF GOTHENBURG

Temporary breaking
of the invariant

SHAREQA

Value of nitem

(semaphore counter)

threads in
these locations

producer put consumer get

+1 pce: 3 pc,: 8 nItems: 1 buffer//{x)
+2 pce: 3 pc,: 9 nItems: O buffe 'ﬂx)
+3 pcy: 4 pCy: 9 nItems: O bufferf [z, y)
+4 pce: S pc,: 9 nItems: O buffen:|(x,y)
+5 pci: S pc,: 10 nItems: O buffer:|{x,vy)
+6 pci: S pc,: 11 nItems:()bufferu(y)
+7 pce: S pc,: 12 nItems: 0 buffer:'Jr(y)
+8 pce: S done nItems: O buffer: (y)
+9 done done nItems: | buffer: (y)

CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Unbounded shared buffer

public class UnboundedBuffer<T> implements Buffer<T> ({

Lock lock = new Lock(); // for exclusive access to buffer
Semaphore nltems = new Semaphore(0); // number of items in buffer
Collection storage = ...; // any collection (list, set, ...)
invariant { storage.count() == nltems.count() + at(5,15-17); }

}

1 pUbliC void put (T item) { 12 public T get () {

a2 lock.lock(); // lock 13 // wait until nItems > 0

3 // store item 14 nItems.down () ;

4 storage.add (item) ; 15 lock.lock(); // lock

5 nItems.up () ; // update nItems 10 //lretrieve item

6 lock.unlock(); // release 17 T 1tem =storage.remove ()
’ 18 lock.unlock(); // release

7 19 return item;

8 ag }

9 public int count () {

10 return nltems.count(); // locking here?

11 }

4%y CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Buffer: method get

What happens if another thread gets the lock
just after the current threads has
decremented the semaphore nItems?

Can we execute down after 1lock?

* If the other thread is a producer, it doesn’t
matter: as soon as get resumes execution, .,

=
¥}

there will be one element in storage to 14 nItems.doyn () ;
remove 15 lock.lock(); // lock
16 // retrieve item
17 T i1tem =storage.remove ()
* |f the other thread is a consumer, it must i leekcumlock() s // feleasic
1g return 1tem;

have synchronized with the current thread
on nItems.down (), and the order of
removal of elements from the buffer
doesn’t matter

A ST
-) CHALMERS (8§} UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY =
i

Buffer: method get

12 public T get () {

Executing down after 1ock: | |
13 // wait until nitems > 0
\ 14 lock.lock(); // lock

15 nItems.down () ;

*If the buffer is empty when locking, 7
there is a deadlock! 17 T item =storage.remove () ;
* Will not succeed executing down () : i:iirinizgi() 3) ERLEESE

since the buffer is empty: it blocks! 20)

CHALMERS

UNIYERSITY QF TECHNOLOGY

Bounded shared buffer

public class BoundedBuffer<T> implements Buffer<T> {
Lock lock = new Lock(); // for exclusive access
Semaphore nlItems = new Semaphore (0); // rEems

Two semaphores ~

Semaphore nFree = new Semaphore (N) slots in buffer
Collection storage = ...; // any collegtfon (list, set, ...)
invariant { storage.count () == nlI s.count () +
+ at(6,13-15) == N“* nFree.count() - at(4-6,16) ; }
: public void put (T item) { 10 public T get () {
= // Wai; unf)ll wlrage > 0 w // wait until nItems > 0 May deadlock
nFree.down () ; >
i loak. loek () o ‘lﬁx May deadlock 12 nItems.down () ;< if swapped
5 // store item if swapped 13 lock.lock(); lock
6 storage.add(item); 14 // retrieve item
7 nltems.up()yg // update nItems 15 T item = storage.remove () ;
8 }lOCk'unlOCk()' (release 16 nFree.up(); // update nFree
9

17 lock.unlock (/ release

OK to swap 18 return item;
19 }

OK to swap

) CHALMERS #)) UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY A =
i

Waiting on multiple conditions?

The operations offered by semaphores do not support waiting on multiple
conditions (not empty and not full in our case) using only one semaphore

* Busy-waiting on the semaphore will not work:

// wait until there 1is space in the buffer
while (! (nItems.count() < N)) {};

// the buffer may be full again when locking!
lock.lock(); // lock

// store 1tem

storage.add (1tem) ;

nltems.up () ; // update nItems

lock.unlock(); // release

-) CHALMERS (&§}) yNIVERSITY OF GOTHENBURG

Barriers

CHALMERS ®%)) UNIVERSITY OF GOTHENBURG

Barriers (also called rendezvous)

A barrier is a form of synchronization where there is a point (the

barrier) in a program’s execution that all threads in a group have
to reach before any of them is allowed to continue

A solution to the barrier synchronization problem for 2 threads with binary semaphores

Semaphore[] done = {new Semaphore(ﬁ)w Semaphore(@)&;

to t1
Capacity 0 forces up
// code before barrier // code before barrier before first down
donelig].up(); // t done donel?{].up(); // u done
donel[?,].down(); // wait u /do.ne'rto]/.dgwn(); // wait t
// code hfter barrzt // code after rier

down Wwaits until the other

up done unconditionally tread has reaches the barrier

i) CHALMERS é’;__s €)) UNIVERSITY OF GOTHENBURG

Barriers: variant 1

The solution still works if to performs down before up — or, symmetrically, if 1
does the same

Semaphore[] done = new Semaphore(0), new Semaphore(0);

lo t1
// code before barrier // code before barrier
done[Z;].down(); // wait u done[7{].up(); // u done
done[tp].up(); // t done donelty].down(); // wait t
// code after barrier // code after barrier

This is, however, a bit less efficient: the last thread to reach the barrier has to stop
and yield to the other (one more context switch)

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

Barriers: variant 2

The solution deadlocks if both to and f: perform down before up

Semaphore[] done = new Semaphore(0), new Semaphore(0);

Lo i1
// code before barrier // code before barrier
done([?1].down(); // wait u done[fg] .down(); // wait t
done[tp].up(); // t done done[t;].up(); // u done
// code after barrier // code after barrier

There is a circular waiting, because no thread has a chance to signal to the other that it
has reached the barrier

CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Barriers with nthreads (single use)

Keeping track of n threads reaching the barrier:
* nDone: number of threads that have reached the barrier
* lock: to update nDone atomically
e open: to release the waiting threads (“opening the barrier”)
int nDone = 0; // number of done threads

Lock lock = new Lock(); // mutual exclusion for nDone
Semaphore open = new Semaphore(0); // 1 iff barrier is open

thread ¢,
Total number of

expected threads

// code before barrier
lock. Lock(); // lo

nDone = nDone + 1; // I'm done

if (nDone == n¥ open.up(); // I’'m the last: we can go! Can we switch
lock.unlock(); +77 unlock nDone these?
open.down(); // proceed when possible

open.up(); // let the next one go

// code after barrier

ST,

é’, "i_j UNIVERSITY OF GOTHENBURG

S ':

CHALMERS

UNIYERSITY QF TECHNOLOGY

Barriers with nthreads (single use): variant

int nDone O: // number of done threads
Lock lock = new Lock(); // mutual exclusion for nDone
Semaphore open = new Semaphore(0); // 1 iff barrier 1is open

thread t,

Can we open the barrier after unlock?
// code before barrier

lock. lock(); // lock nDon
nDone = nDone + 1;
lock.unlock();

// unlock nDone

if (nDone == n) open.up(); // I’m the last: we can go!
open.down(); // proceed when possible
open.up(); // let the next one go

// code after barrzt
Such pairs of wait/signal are called turnstiles

* |n general, reading a shared variable outside a lock may give an inconsistent value
* In this case, however, only after the last thread has arrived can any thread read
nDone == n, because nDone is only incremented

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Reusable barriers

interface Barrier {
// block until expect () threads have reached barrier
void wait () ;

// number of threads expected at the barrier
int expect();

}

Returned from

Reusable barrier: implement Barrier/ such that:

e a thread blocks on wait () until all threads have reached the barrier
e after expect () threads have executed wait (), the barrier is closed again

ST,

() UNIVERSITY OF GOTHENBURG

S ':'

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

Threads at a reusable barrier

Threads continuously approach the barrier, and all synchronize their access at
the barrier

Barrier barrier = new Barrier(n); // barrier for n threads

thread;.

while (true) {
// code before barrier
barrier.wait(); // synchronize at barrier
// code after barrier

Reusable barriers: first attempt

public class NonBarrierl implements Barrier ({
int nDone = 0; // number of done threads
Semaphore open = new Semaphore (0) ;
final int n;

// initialize barrier for 'n' threads
NonBarrierl (int n) {
this.n = n;

}

// number of threads expected at tHe barrier
int expect () {
return n;

}

public void wait () {
synchronized (this)
nDone += 1;
}
if (nDone == n)
open.up () ;

{
// I'm done

open.down () // proceed en possible
open.up () // let € next one go
synchronized (this) {

nDone -= 1; I've gone through

}
if (nDone == 0)
open.down () ;

// I'm the last through:

CHALMERS

UNIYERSITY QF TECHNOLOGY

ST,
é’:ij UNIVERSITY OF GOTHENBURG

What if n threads “wait” here until nDone ==n?

More than one thread may open the
barrier (the first open.up ()): this was
not a problem in the non-reusable
version, but now some threads may be
executing wait again before the barrier

is closed again!

What if n threads “wait” here until nDone ==0?

More than one thread may try to
close the barrier (last open. down()):
Deadlock!

Close barrier!

CHALMERS

UNIYERSITY QF TECHNOLOGY

j UNIVERSITY OF GOTHENBURG

&

Reusable barriers: second attempt

public class NonBarrier?Z2 implements Barrier ({ Is mu|t|p|e Signa”ing possib'e? Nol
int nDone = 0; // number of done threads
Semaphore open = new Semaphore (0); Anything else going wrong?

final int n;

A fast thread may race through the

// initialize barrier for 'n' threads

e whole method, and re-enter it before
) the barrier has been closed, thus getting
// number of threads expected at the barrier ahead of the slower threads (Stl” in the
int expect () { - - - :
return n: previous iteration of the barrier)
}
public void wait () { This is not prevented by stron
synchronized (this) { P . y Strons
nDone += 1; // I'm done semaphores: it occurs because
if D == . ; // b /
p o (nbone == n) open.up() She banEees the last thread through leaves
open.down () // proceed when possible
open.up () // let the next one go the gate open (Ca”S Op€ell. up())
synchronized (this) {
nDone -= 1; // I've gone through
if (nDone == 0) open.down () ; // close barrier

}
}

Reusable barriers: second attempt

(cont’d)

O 00 NOYUTL B WN -

10

public class NonBarrier2 {

public void wait ()

{

synchronized (this)
{nDone += 1;

if

(nDon

open.down ()
open.up ()
synchronized (this)
{nDone -=

if

(nDone

g

)

)

open.up ()}

open.down ()

g)

Y CHALMERS éf ;

j UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY

(a) All n threads are at 8, with open.count ()

(b) The fastest thread tr completes wait and re-

enters it with nDone == n - 1

(c) Thread tr reaches 6 with nDone == n, which

it can execute because open.count () > 0

(d) Thread t; reaches 8 again, but it is one

iteration ahead of all other threads!

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Reusable barriers: Correct solution

Photo by Photnart: Heidelberg Lock, Germany

public class SemaphoreBarrier implements

int nDone = 0; // number of done tbh#éad
Semaphore gatel = new Semaphore(0); 4~ first gate
Semaphore gate2 = new Semaphore (1

final int n;

// 1lnitialize barrier for n'
SemaphoreBarrier (int n) {
this.n = n;

}

// number of threads expected at the barrier

int expect () {
return n;

}

public void wait () { approach();

threads

leave () ;

Reusable barriers: Correct solution

;// second gate

}

CHALMERS

UNIYERSITY QF TECHNOLOGY

gatel closed

gate2 open
void approach ()
synchronized
nDone += 1;
if (nDone ==
gatel.up () ;

gate2.down () ; //

}

}
gatel.down () ;

gatel.up();
}

volid leave () {
synchronized
nDone -= 1;
if (nDone ==
gate2.up();

gatel.down () ; //

}

}
gate2.down () ;

gate2.up();

; UNIVERSITY OF GOTHENBURG

{

(this) {

// arrived
) { // if last in:
// open gatel
close gateZ

// pass gatel
// let next pass

(this) {

// goling out
) { // 1f last out:
// open gateZl
close gatel

// pass gate’
// let next pass

J*"“F"-
i,
S

CHALMERS ﬂ;} UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY e

Reusable barriers: improved solution

If the semaphores support adding n to the counter at once, we can write a
barrier with fewer semaphore accesses

Both gates initially closed

public class NSemaphoreBarrier extends Semapho
Semaphore gatel new Semaphore (0)
Semaphore gate? new Semaphore (0)

gate
/ second gate

void approach() { void leave () {

synchronized (this) { synchronized (this) {

nDone += 1; nDone —-= 1;

if (nDone == n) / Open gatel if (nDone == 0)_~ Open gate2

} gatel.up(n); for n threads gateZ.up(n); for n threads

}
gatel.down(); // pass gatel gate2.down () ;
// last thread here closes gatel // last thread here closes gate?’

J }

Java semaphores support adding n to counter (release (n))
Anyway, up (n) need not be uninterruptible, so we can also implement it with a loop

{#%)) UNIVERSITY OF GOTHENBURG

Readers-writers

=) CHALMERS é’;_sj UNIVERSITY OF GOTHENBURG

Readers-writers: overview

Readers and writers concurrently access shared data:

* readers may execute concurrently with other readers, but need to exclude
writers

* writers need to exclude both readers and other writers

barg KARLSRUHE
WACHTERSBACH

: c . Kéin DORTMVND
The problem captures situations common in KONIGSTEIN/TS

databases, filesystems, and other situations MUNCHEN

MARBURG PmF
yvhere.accesses to shared data may be RIEDST. GODDELAU 2
inconsistent

weig KOBLENZ | - 24

WIEBELSB-HEUBACH 12
E

:_! UNIVERSITY OF GOTHENBURG

Readers-writers: The problem

interface Board<T> {
// write message "msg' to board
vold write (T msqg);
// read current message on board
T read ()

Readers-writers problem: implement Board data structure such that:
* multiple reader can operate concurrently

 each writer has exclusive access
Invariant: #WRITERS =0 V (#WRITERS = 1 A #READERS = 0)

Other properties that a good solution should have:
e support an arbitrary number of readers and writers
* no starvation of readers or writers

-} CHALMERS é::’ij UNIVERSITY OF GOTHENBURG

Readers and writers

Readers and writers continuously and asynchronously try to access the board,
which must guarantee proper synchronization

Board<Message> board;

reader,, WIILEr
while (true) { while (true) {
// read message from board // create a new message
Message msg = board.read(); Message msg = create();
// do something with ‘msg’ // write ‘msg’ to board
process(msg); board.write(msg);
} }

CHALMERS

UNIYERSITY QF TECHNOLOGY

Readers-writers board: write Selluifen besed o

one lock and one

; UNIVERSITY OF GOTHENBURG

public class SyncBoard<T> implements Board<T> ({

int nReaders = 0; // # readers on board semaphore
Lock lock = new Lock(); // for exclusive access to nReaders
Semaphore empty = new Semaphore(l); // 1 iff no active threads
T message; // current message
public T read() { public void write(T msg) {
lock.lock () ; // lock to update nReaders // get exclusive access
if (nReaders == 0) // if first reader, empty.down () ;
empty.down () ; // set not empty message = msqg; // write (cs)
nReaders += 1; // update active readers // release board
lock.unlock () ; // release lock to nReaders empty.up () ;
T msg = message; // read (critical section) }
lock.lock () ; // lock to update nReaders invariant { nReaders == 0 < empty.count() == 1}
nReaders -= 1; // update active readers
if (nReaders == 0) // if last reader
empty.up(); | // set empty count () becomes 1 after executing empty.up ()
lock.unlock () ;) // release lock to nReaders and it happens that nReaders = 0

return msg;

'I UNIVERSITY OF GOTHENBURG

Properties of the readers-writers solution

We can check the following properties of the solution:
* empty isabinary semaphore
* when a writer is running, no reader can run
e one reader waiting for a writer to finish also locks out other readers
* a reader signals “empty” only when it is the last reader to leave the board
» deadlock is not possible (no circular waiting)

However, writers can starve: as long as readers come and go with at least one
reader always active, writers are shut out of the board.

Readers-writers board without starvatio

public class FairBoard<T> extends SyncBoard<T> {
// held by the next thread to go

CHALMERS

UNIYERSITY QF TECHNOLOGY

; UNIVERSITY OF GOTHENBURG

One additional semaphore

Semaphore baton = new Semaphore(l, true); // fair binary sem.

public T read() {
// wait for my turn
baton.down () ;
// release a waiting thread
baton.up () ;
// read() as in SyncBoard
return super.read() ,

publie T read(] {

} lock.lock() s

if [(nReadera == 0)
empty.down () ;

nBeaders += 1:
lock.unlock() -

Lock lock = new Leck()

T mes=zage:

public void write (T msg) {
// wait for my turn
baton.down () ;
// write() as in SyncBoard
super.write (msqg) ;
// release a waiting thread
baton.up () ;

T msg = messagej

lock.lock() s
nReaders -= 1;
if (nReaders ==
empty.up() -
lock.unlock() s
return msgy

% CHALMERS

F URIYEERITE GF TECHRGLOET

@ UNIVERSITY OF GOTHEMBURG

Readers-writers board: write

public class SyncBoard<T> implements Board<T> |

int nReadars = 0; # readers on board

Semaphore empty = new Semaphore (1) 1 iff no active threads

public void write (T mag) {
empty.down () ;
message = msg! writ

rders empty.up():
}

invariant { nReaders == (@mpty.count() =1}
If and only if

invariant breaks temporary here when
nReaders = 0 ; just before calling empty.up ()

g
g

Readers-writers board without starvation

public class FairBoard<T> extends SyncBoard<T> {
// held by the next thread to go
Semaphore baton = new Semaphore(l, true); // fair binary sem.

CHALMERS

UNIYERSITY QF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

public T read() {
// wait for my turn
baton.down () ;
// release a waiting thread
baton.up () ;

Now writers do not starve:

// read() as in SyncBoard * Suppose a writer is waiting that all active readers
t . d();
} return super.read() leave: it waits on empty.down () while holding the
public void write (T msg) { baton
// wait for my turn * If new readers arrive, they are shut out waiting for
baton.down () ;
// write() as in SyncBoard the baton

super.write (msg) ;

o Assoon as the active readers terminate and leave,
// release a waiting thread
baton.up () ; the writer is signaled empty, and thus it gets
exclusive access to the board

"N CHALMERS

U= UNIVERSITY OF TECHNOLOGY

:_! UNIVERSITY OF GOTHENBURG

T

Readers-writers with priorities

The starvation free solution we have presented gives all threads the same

priority: assuming a fair scheduler, writers and readers take turn as they try to
access the board

In some applications it might be preferable to enforce difference priorities:

* R = IW: readers and writers have the same priority (asin FairBoard)

* R > W: readers have higher priority than writers (as in SyncBoard)
W > R: writers have higher priority than readers

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

	Slide 0
	Slide 1: Lesson's menu
	Slide 2: Lesson's menu
	Slide 3: A gallery of synchronization problems
	Slide 4: Dining philosophers
	Slide 5: The dining philosophers (reminder)
	Slide 6: Dining philosophers: the problem
	Slide 7: The philosophers
	Slide 8: Left and right
	Slide 9: Dining philosophers with locks and semaphores
	Slide 10: Dining philosophers with semaphores: first attempt
	Slide 11: Dining philosophers with semaphores: first attempt
	Slide 12: Dining philosophers solution 1: breaking the symmetry
	Slide 13: Breaking symmetry to avoid deadlock
	Slide 14: Dining philosophers solution 2: bounding resources
	Slide 15: Starvation-free philosophers
	Slide 16: Producer-consumer
	Slide 17: Producer-consumer: overview
	Slide 18: Producer-consumer: The problem
	Slide 19: Producer-consumer: Desired properties
	Slide 20: Producers and consumers
	Slide 21: Unbounded shared buffer
	Slide 22: Buffer: method put
	Slide 23
	Slide 24
	Slide 25: Unbounded shared buffer
	Slide 26: Buffer: method get
	Slide 27: Buffer: method get
	Slide 28: Bounded shared buffer
	Slide 29: Waiting on multiple conditions?
	Slide 30: Barriers
	Slide 31: Barriers (also called rendezvous)
	Slide 32: Barriers: variant 1
	Slide 33: Barriers: variant 2
	Slide 34: Barriers with n threads (single use)
	Slide 35: Barriers with n threads (single use): variant
	Slide 36: Reusable barriers
	Slide 37: Threads at a reusable barrier
	Slide 38: Reusable barriers: first attempt
	Slide 39: Reusable barriers: first attempt
	Slide 40: Reusable barriers: second attempt
	Slide 41: Reusable barriers: second attempt (cont’d)
	Slide 42: Reusable barriers: second attempt (cont’d)
	Slide 43: Reusable barriers: Correct solution
	Slide 44: Reusable barriers: Correct solution
	Slide 45: Reusable barriers: Correct solution
	Slide 46: Reusable barriers: improved solution
	Slide 47: Readers-writers
	Slide 48: Readers-writers: overview
	Slide 49: What's the gate for the flight to Honolulu?
	Slide 50: Readers-writers: The problem
	Slide 51: Readers and writers
	Slide 52: Readers-writers board: write
	Slide 53: Properties of the readers-writers solution
	Slide 54: Readers-writers board without starvation
	Slide 55: Readers-writers board without starvation
	Slide 56: Readers-writers with priorities
	Slide 57: Quiz Mutex for Multiple Threads and Semaphores
	Slide 58
	Slide 59: Reusable barriers: second attempt (cont’d)
	Slide 60: Reusable barriers: correct solution
	Slide 61: Reusable barriers: Correct solution
	Slide 62: Readers-writers board: write
	Slide 63: Readers-writers board: write

